30 research outputs found

    Potential and Challenges of Analog Reconfigurable Computation in Modern and Future CMOS

    Get PDF
    In this work, the feasibility of the floating-gate technology in analog computing platforms in a scaled down general-purpose CMOS technology is considered. When the technology is scaled down the performance of analog circuits tends to get worse because the process parameters are optimized for digital transistors and the scaling involves the reduction of supply voltages. Generally, the challenge in analog circuit design is that all salient design metrics such as power, area, bandwidth and accuracy are interrelated. Furthermore, poor flexibility, i.e. lack of reconfigurability, the reuse of IP etc., can be considered the most severe weakness of analog hardware. On this account, digital calibration schemes are often required for improved performance or yield enhancement, whereas high flexibility/reconfigurability can not be easily achieved. Here, it is discussed whether it is possible to work around these obstacles by using floating-gate transistors (FGTs), and analyze problems associated with the practical implementation. FGT technology is attractive because it is electrically programmable and also features a charge-based built-in non-volatile memory. Apart from being ideal for canceling the circuit non-idealities due to process variations, the FGTs can also be used as computational or adaptive elements in analog circuits. The nominal gate oxide thickness in the deep sub-micron (DSM) processes is too thin to support robust charge retention and consequently the FGT becomes leaky. In principle, non-leaky FGTs can be implemented in a scaled down process without any special masks by using “double”-oxide transistors intended for providing devices that operate with higher supply voltages than general purpose devices. However, in practice the technology scaling poses several challenges which are addressed in this thesis. To provide a sufficiently wide-ranging survey, six prototype chips with varying complexity were implemented in four different DSM process nodes and investigated from this perspective. The focus is on non-leaky FGTs, but the presented autozeroing floating-gate amplifier (AFGA) demonstrates that leaky FGTs may also find a use. The simplest test structures contain only a few transistors, whereas the most complex experimental chip is an implementation of a spiking neural network (SNN) which comprises thousands of active and passive devices. More precisely, it is a fully connected (256 FGT synapses) two-layer spiking neural network (SNN), where the adaptive properties of FGT are taken advantage of. A compact realization of Spike Timing Dependent Plasticity (STDP) within the SNN is one of the key contributions of this thesis. Finally, the considerations in this thesis extend beyond CMOS to emerging nanodevices. To this end, one promising emerging nanoscale circuit element - memristor - is reviewed and its applicability for analog processing is considered. Furthermore, it is discussed how the FGT technology can be used to prototype computation paradigms compatible with these emerging two-terminal nanoscale devices in a mature and widely available CMOS technology.Siirretty Doriast

    Accelerometer-Based Method for Extracting Respiratory and Cardiac Gating Information for Dual Gating during Nuclear Medicine Imaging

    Get PDF
    Both respiratory and cardiac motions reduce the quality and consistency of medical imaging specifically in nuclear medicine imaging. Motion artifacts can be eliminated by gating the image acquisition based on the respiratory phase and cardiac contractions throughout the medical imaging procedure. Electrocardiography (ECG), 3-axis accelerometer, and respiration belt data were processed and analyzed from ten healthy volunteers. Seismocardiography (SCG) is a noninvasive accelerometer-based method that measures accelerations caused by respiration and myocardial movements. This study was conducted to investigate the feasibility of the accelerometer-based method in dual gating technique. The SCG provides accelerometer-derived respiratory (ADR) data and accurate information about quiescent phases within the cardiac cycle. The correct information about the status of ventricles and atria helps us to create an improved estimate for quiescent phases within a cardiac cycle. The correlation of ADR signals with the reference respiration belt was investigated using Pearson correlation. High linear correlation was observed between accelerometer-based measurement and reference measurement methods (ECG and Respiration belt). Above all, due to the simplicity of the proposed method, the technique has high potential to be applied in dual gating in clinical cardiac positron emission tomography (PET) to obtain motion-free images in the future.</p

    Computing in Cardiology

    Get PDF
    Traditionally the machine learning assisted quality assessment of biomedical signals (such as electrocardiogram - ECG, photoplethysmography - PPG) have classified a signal segment quality as ”good” or ”bad” and used this assessment to determine if the segment is usable for further processing steps, such as heart beat estimation. In principle, this is a suitable approach and can be justified by its straightforward implementation and applicability. However, in the case of body sensor networks with multiple simultaneously operating units, such as IMUs (Inertial Measurement Units) there is a need to select the best performing axes for further processing, instead of processing the data among all axes (which can be computationally intensive). For a single IMU, there are already six separate acceleration and angular velocity axes to be evaluated. In this paper, instead of classifying the signal segments simply as ”good” or ”bad” quality we propose a learning to rank based approach for the quality assessment of cardiac signals, which is able to determine the relative importance of a signal axis or waveform. We illustrate that the method can generalize between multiple human experts annotated ground truths in automated best axis selection and ranking of signal segments based on their quality.</p

    Cardiac monitoring of dogs via smartphone mechanocardiography : a feasibility study

    Get PDF
    Abstract Background In the context of monitoring dogs, usually, accelerometers have been used to measure the dog’s movement activity. Here, we study another application of the accelerometers (and gyroscopes)—seismocardiography (SCG) and gyrocardiography (GCG)—to monitor the dog’s heart. Together, 3-axis SCG and 3-axis GCG constitute of 6-axis mechanocardiography (MCG), which is inbuilt to most modern smartphones. Thus, the objective of this study is to assess the feasibility of using a smartphone-only solution to studying dog’s heart. Methods A clinical trial (CT) was conducted at the University Small Animal Hospital, University of Helsinki, Finland. 14 dogs (3 breeds) including 18 measurements (about one half of all) where the dog’s status was such that it was still and not panting were further selected for the heart rate (HR) analysis (each signal with a duration of 1 min). The measurement device in the CT was a custom Holter monitor including synchronized 6-axis MCG and ECG. In addition, 16 dogs (9 breeds, one mixed-breed) were measured at home settings by the dog owners themselves using Sony Xperia Android smartphone sensor to further validate the applicability of the method. Results The developed algorithm was able to select 10 good-quality signals from the 18 CT measurements, and for 7 of these, the automated algorithm was able to detect HR with deviation below or equal to 5 bpm (compared to ECG). Further visual analysis verified that, for approximately half of the dogs, the signal quality at home environment was sufficient for HR extraction at least in some signal locations, while the motion artifacts due to dog’s movements are the main challenges of the method. Conclusion With improved data analysis techniques for managing noisy measurements, the proposed approach could be useful in home use. The advantage of the method is that it can operate as a stand-alone application without requiring any extra equipment (such as smart collar or ECG patch)

    Stand-alone Heartbeat Detection in Multidimensional Mechanocardiograms

    Get PDF

    Computing in Cardiology 2016

    Get PDF
    Cardiac, respiratory, and patient body motion artifacts degrade the image quality and quantitative accuracy of the nuclear medicine imaging which may lead to incorrect diagnosis, unnecessary treatment and insufficient therapy. We present a new miniaturized system including joint micro electromechanical (MEMS) accelerometer and gyroscope sensors for simultaneous extraction of cardiac and respiratory signals. We employ two tri-axial joint MEMS sensors for selecting an optimal trigger point in a cardiac and respiratory cycle. The 6-axis motion sensing helps to detect candidate features for cardiac and respiratory gating in Positron emission tomography (PET) imaging. The aim of this study was to validate MEMS-derived signals against traditional Real-time Position Management (RPM) and electrocardiography (ECG) measurement systems in 4 healthy volunteers. High agreement and correlation were found between cardiac and respiratory cycle intervals. These promising first results warrant for further investigations. </p

    Multiclass Classifier based Cardiovascular Condition Detection Using Smartphone Mechanocardiography

    Get PDF
    Cardiac translational and rotational vibrations induced by left ventricular motions are measurable using joint seismocardiography (SCG) and gyrocardiography (GCG) techniques. Multi-dimensional non-invasive monitoring of the heart reveals relative information of cardiac wall motion. A single inertial measurement unit (IMU) allows capturing cardiac vibrations in sufficient details and enables us to perform patient screening for various heart conditions. We envision smartphone mechanocardiography (MCG) for the use of e-health or telemonitoring, which uses a multi-class classifier to detect various types of cardiovascular diseases (CVD) using only smartphone’s built-in internal sensors data. Such smartphone App/solution could be used by either a healthcare professional and/or the patient him/herself to take recordings from their heart. We suggest that smartphone could be used to separate heart conditions such as normal sinus rhythm (SR), atrial fibrillation (AFib), coronary artery disease (CAD), and possibly ST-segment elevated myocardial infarction (STEMI) in multiclass settings. An application could run the disease screening and immediately inform the user about the results. Widespread availability of IMUs within smartphones could enable the screening of patients globally in the future, however, we also discuss the possible challenges raised by the utilization of such self-monitoring systems.</p

    Automated Detection of Atrial Fibrillation Based on Time-Frequency Analysis of Seismocardiograms

    Get PDF
    In this paper, a novel method to detect atrial fibrillation from a seismocardiogram (SCG) is presented. The proposed method is based on linear classification of the spectral entropy and a heart rate variability index computed from the SCG. The performance of the developed algorithm is demonstrated on data gathered from 13 patients in clinical setting. After motion artefact removal, in total 119 minutes of AFib data and 126 minutes of sinus rhythm data were considered for automated atrial fibrillation detection. No other arrhythmias were considered in this study. The proposed algorithm requires no direct heartbeat peak detection from the SCG data, which makes it tolerant against interpersonal variations in the SCG morphology, and noise. Furthermore, the proposed method relies solely on SCG and needs no complementary electrocardiography (ECG) to be functional. For the considered data, the detection method performs well even on relatively low quality SCG signals. Using a majority voting scheme which takes 5 randomly selected segments from a signal and classifies these segments using the proposed algorithm, we obtained an average true positive rate of 99.9% and an average true negative rate of 96.4% for detecting atrial fibrillation in leave-one-out cross-validation. The presented work facilitates adoption of MEMS-based heart monitoring devices for arrhythmia detection.</p
    corecore